Minisymposium 21

Centrosomes, Cilia and Flagella

Wednesday, December 12
8:30-11:05 am
Ballroom 20D
Co-Chairs: Guangshuo Ou, Tsinghua University; and Jadranka Loncarek, National Cancer Institute/CCR-Frederick/NIH

8:30 am       Introduction

8:35 am   M209    High Speed AFM of SAS-6 protein self-assembly reveals biophysical principles at the root of centriole formation.  N. Banterle1, A. Nievergelt2, T. Hübscher1, G. Fantner2, P. Gönczy1; 1Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland, 2Laboratory for Bio- and Nano-Instrumentation, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland

8:50 am   M210    Mechanisms Regulating Cilia Abundance in Multiciliated Cells.  R. Nanjundappa1, D. Kong2, K. Shim1, T. Stearns3, S.L. Brody4, J. Loncarek2, M.R. Mahjoub1,5; 1Medicine (Nephrology Division), Washington University, St Louis, MO, 2Center for Cancer Research, National Cancer Institute, Frederick, MD, 3Biology, Stanford University, Stanford, CA, 4Medicine (Pulmonary Division), Washington University, St Louis, MO, 5Cell Biology and Physiology, Washington University, St Louis, MO

9:05 am   M211    A two-step mechanism for the inactivation of microtubule organizing center function at the centrosome.  J. Magescas1, J.C. Zonka1, J.L. Feldman1; 1Biology, Stanford University, Stanford, CA

9:20 am   M212    Radial organization and pre-mitotic remodeling of mammalian centriole distal appendages.  D. Kong1, M. Bowler1, S. Sun2, R. Nanjundappa3, H. Sui2, M.R. Mahjoub3, J. Loncarek1; 1LPDS, NIH/NCI, Frederick, MD, 2Wadsworth Center, New York Department of Health, Albany, NY, 3Department of Cell Biology and Physiology, Washington University, St Louis, MO

9:35 am   M213    The Role and Fate of the Centrosome During Muscle Differentiation.  J.M. Geisinger1, T. Stearns1,2; 1Biology, Stanford University, Stanford, CA, 2Genetics, Stanford University, Stanford, CA

9:50 am   M214    Primary cilia control gut length by regulating its mechanical properties.  Y. Yang1, P. Paivinen2, K.E. Mostov1,3, T.P. Makela2, J.F. Reiter1; 1Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 2Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland, 3Department of Anatomy, University of California San Francisco, San Francisco, CA

10:05 am   M215    Structure of Dynein-2 Reveals a Contorted Tail Coordinating Intraflagellar Transport.  K. Toropova1, R. Zalyte2, M. Mladenov1, A.P. Carter2, A.J. Roberts1; 1Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom, 2Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom

10:20 am   M216    Intraflagellar Transport Motor Proteins in C. elegans Sensory Neurons.  G. Ou1; 1School of Life Sciences, Tsinghua University, Beijing, China

10:35 am   M217    Rapid and acute inhibition of heterotrimeric kinesin-2 function reveals mechanisms of intraflagellar transport in mammalian cilia.  M.F. Engelke1, B. Waas1, S.E. Kearns1, A. Suber1, A. Boss1, B.L. Allen1, K.J. Verhey1; 1Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI

10:50 am   M218    Microtubule inner proteins (MIPs) are essential for the structural integrity and function of motile cilia axonemes.  M. Winey1,2, Y. Zhao2, D. Stoddard3, B. Bayless1, P. Louka4, A. Fabritius1, C. Ebmeier2, W. Heydeck2, W. Old2, J. Gaertig4, D. Nicastro3; 1Molecular & Cellular Biology, University of California, Davis, Davis, CA, 2Molecular, Cellular & Developmental Biology , University of Colorado, Boulder, Boulder, CO, 3Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 4Cellular Biology, University of Georgia, Athens, GA

Click here to return to full list of Minisymposia.